Consider the matrix A = \begin{bmatrix}2 & -7 \\ -2 & -3 \end{bmatrix}, which can be viewed as a matrix representation of a linear operator on \mathbb{R}^2, and the vector \vec{x} = \begin{bmatrix}7 \\ -2 \end{bmatrix} \in \mathbb{R}^2. It is easy to check that A \vec{x} = 4 \vec{x}. In this example, the output of the matrix transformation is a scalar multiple of the nonzero input vector. Similarly, the nonzero vector \vec{y} = \begin{bmatrix}1 \\ 1 \end{bmatrix} satisfies A \vec{y} = -5 \vec{y}. We can say that 4 is an eigenvalue of A and \vec{x} is an eigenvector corresponding to the eigenvalue 4. Likewise, we can say that -5 is an eigenvalue of A and \vec{y} is an eigenvector corresponding to the eigenvalue -5.

 

Definition

If A is an n×n matrix, then a nonzero vector \vec{x} in \mathbb{R}^n is called an eigenvector of A if A \vec{x} is a scalar multiple of \vec{x}, that is:

A \vec{x} = \lambda \vec{x}  ………………………………………………………………………………………………………………………………………………………………………………………………. (*)

for some scalar λ. The scalar λ is called an eigenvalue of A and \vec{x} is said to be an eigenvector corresponding to λ.

 

In the definition above, (*) can be written as A \vec{x} = \lambda I \vec{x} where I is the n×n identity matrix. Furthermore, (*) is equivalent to:

(A - \lambda I) \vec{x} = \vec{0} ………………………………………………………………………………………………………………………………………………………………………………… (**)

 

By the definition above, the eigenvector is not a zero vector. Thus, (**) must have nontrivial solutions. In order that (**) has nontrivial solutions, the determinant of (A - \lambda I) must be zero. Then we have the following equation.

\vert A - \lambda I \vert = 0 ……………………………………………………………………………………………………………………………………………………………………………………. (***)

This is called the characteristic equation of A. When expanded, the determinant \vert A - \lambda I \vert is a polynomial in λ and it is called  the characteristic polynomial of A.

 

Example 1

Find the eigenvalues of the matrix A = \begin{bmatrix}2 & -7 \\ -2 & -3 \end{bmatrix}.

Answer

A - \lambda I = \begin{bmatrix}2 & -7 \\ -2 & -3 \end{bmatrix} - \lambda \begin{bmatrix}1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix}2 - \lambda & -7 \\ -2 & -3 - \lambda \end{bmatrix}

The characteristic polynomial of A is \left| \begin{matrix}2 - \lambda & -7 \\ -2 & -3 - \lambda \end{matrix} \right| = \lambda^2 + \lambda - 20. Hence the characteristic equation of A is λ2 + λ – 20 = 0. Solving this quadratic equation, we get two distinct roots, that is λ1 = 4 and λ2 = -5.

 

The task is now to find the corresponding eigenvectors corresponding to the eigenvalues of a given matrix. The eigenvectors of A corresponding to an eigenvalue λ are the nonzero vectors \vec{x} that satisfy (*) above. This is to say that the eigenvectors corresponding to λ are the nonzero vectors in the solution space of (A - \lambda I) \vec{x} = \vec{0}. The solution space is called the eigenspace of A corresponding to λ.

 

Theorem

If A is an n×n matrix, then the following are equivalent.

  1. λ is an eigenvalue of A.
  2. The system of equations (A - \lambda I) \vec{x} = \vec{0} has nontrivial solutions.
  3. There is a nonzero vector \vec{x} \in \mathbb{R}^n such that A \vec{x} = \lambda \vec{x}.
  4. λ is a real solution of the characteristic equation \vert A - \lambda I \vert = 0.

 

The example below shows how to apply the theorem to determine the eigenspace of a square matrix.

 

Example 2

Referring to Example 1, find the eigenspace of A.

Answer

By definition, \vec{x} = \begin{bmatrix}x_1 \\ x_2 \end{bmatrix} is an eigenvector of A corresponding to λ if and only if \vec{x} is a nontrivial solution of (A - \lambda I) \vec{x} = \vec{0}. Thus in this case we have to find nontrivial solutions of the following equation.

\begin{bmatrix}2 - \lambda & -7 \\ -2 & -3 - \lambda \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix} ………………………………………………………………………………………………………………………………………………… (1)

Example 1 shows that the eigenvalues of A are λ1 = 4 and λ2 = -5.

If λ = λ1 = 4, then (1) becomes:

\begin{bmatrix}-2 & -7 \\ -2 & -7 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}

which corresponds to the linear equation -2x1 – 7x2 = 0. It has infinitely many solutions. It is easy to check that for every t \in \mathbb{R} the ordered pair (7t,-2t) is a solution of the equation. Therefore, the eigenspace of A corresponding to λ = 4 is E_1 = \begin{Bmatrix} t \begin{bmatrix} 7 \\ -2      \end{bmatrix} \Bigr| t \in \mathbb{R} \end{Bmatrix}.

If λ = λ2 = -5, then (1) becomes:

\begin{bmatrix}7 & -7 \\ -2 & 2 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}

By applying some elementary row operations, it can be proved that the matrix \begin{bmatrix}7 & -7 \\ -2 & 2 \end{bmatrix} is equivalent to \begin{bmatrix}1 & -1 \\ 0 & 0 \end{bmatrix}. This corresponds to the linear equation x1 – x2 = 0. It has infinitely many solutions. It is easy to check that for every t \in \mathbb{R} the ordered pair (t,t) is a solution of the equation. Therefore, the eigenspace of A corresponding to λ = -5 is E_2 = \begin{Bmatrix} t \begin{bmatrix} 1 \\ 1      \end{bmatrix} \Bigr| t \in \mathbb{R} \end{Bmatrix}.

 

Example 3

Consider the matrix: A = \begin{bmatrix}5 & 6 & 2  \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{bmatrix}. Find the eigenspace.

Answer

The theorem above suggests that to get the eigenvalues of A we have to find the solution of the characteristic equation \vert A - \lambda I \vert = 0.

\left| \begin{matrix}5 - \lambda & 6 & 2 \\ 0 & -1 - \lambda & -8 \\ 1 & 0 & -2 - \lambda \end{matrix} \right| = 0 \\  \lambda^3 - 2 \lambda^2 - 15 \lambda + 36 = 0 \\  (\lambda - 3)^2 (\lambda + 4) = 0.

This implies λ = 3 or λ = -4.

To determine the eigenspace of A corresponding to λ = 3, substitute λ = 3 into the system of equations (A - \lambda I) \vec{x} = \vec{0}. Assuming \vec{x} = \begin{bmatrix}x_1 \\ x_2 \\ x_3 \end{bmatrix}, it follows that:

\begin{bmatrix}2 & 6 & 2 \\  0 & -4 & -8 \\ 1 & 0 & -5 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix} …………………………………………………………………………………………………………………………………………………… (2)

By applying some elementary row operations, it can be easily shown that the solution set of (2) is equal to the solution set of (3) below.

\begin{bmatrix}1 & 0 & -5 \\  0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix} ………………………………………………………………………………………………………………………………………………………. (3)

Note that (3) corresponds to the system of linear equations \left\{ \begin{matrix} x_1 &  & -5 x_3 = 0 \\  & x_2 & + 2x_3 = 0 \end{matrix}.

The solution set of the system is E_1 = \begin{Bmatrix} t \begin{bmatrix} 5 \\ -2 \\ 1  \end{bmatrix} \Bigr|             t \in \mathbb{R} \end{Bmatrix}. It is an eigenspace of A corresponding to λ = 3.

If λ = -4, then A - \lambda I = \begin{bmatrix}9 & 6 & 2 \\ 0 & 3 & -8 \\ 1 & 0 & 2 \end{bmatrix}, which is equivalent to \begin{bmatrix}1 & 0 & 2 \\ 0 & 1 & -8/3 \\ 0 & 0 & 0 \end{bmatrix}. If \vec{x} = \begin{bmatrix}x_1 \\ x_2 \\ x_3 \end{bmatrix}, the matrix corresponds to the system of linear equations represented as \begin{bmatrix}1 & 0 & 2 \\ 0 & 1 & -8/3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix}. The system has x3 as the only free variable. So, if we set x3 = 3t for any t \in \mathbb{R} then x2 = 8t and x1 = -6t. As a consequence, the eigenspace of A corresponding to λ = -4 is E_2 = \begin{Bmatrix} t \begin{bmatrix} -6 \\ 8 \\ 3  \end{bmatrix} \Bigr| t \in \mathbb{R} \end{Bmatrix}.

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *