There are times when we need to simplify a square root such as √500 into a simpler form, that is 10√5. Similarly, the form \sqrt{\frac{5}{3}} can be simplified to \frac{1}{3} \sqrt{15}. Additionally, the radical fraction \frac{2}{\sqrt{5}+\sqrt{3}} can be simplified to (√5 – √3). This post discusses how to convert such forms into simpler ones.

 

Simplifying √a if some factor of a is a perfect square; a ≥ 0

Express a as the product of factors some of which are perfect squares. Then, pull the roots of the perfect squares out of the radical sign. Suppose that a = a12⋅b where b does not have any perfect square (other than 1) as its factor. Then √a = a1√b.

 

Example 1

Simplify √500.

Answer

500 can be expressed as the product of factors some of which is a perfect square. It is the product of 100 (a perfect square) and 5. In short, 500 = 102⋅5. Pulling the root of 102 out of the radical sign results in:

\sqrt{500}=\sqrt{10^2 \cdot 5}=10 \sqrt{5}

Thus, √500 = 10√5.

 

Example 2

Simplify √216.

Answer

216 can be expressed as the product of factors some of which is a perfect square. It is the product of 36 (a perfect square) and 6, i.e. 216 = 62⋅6. Pulling the root of 62 out of the radical sign yields:

\sqrt{216}=\sqrt{6^2 \cdot 6}=6 \sqrt{6}

So, √216 = 6√6.

 

Simplifying the form of \sqrt{\frac{a}{b}}; ab > 0

Multiply the numerator and denominator of \frac{a}{b} by b so that the denominator of the fraction under the radical sign is a perfect square, i.e. b2. We can pull the root of the perfect square out of the radical sign as follows.

\sqrt{\frac{a}{b}}=\sqrt{\frac{ab}{b^2}}=\frac{1}{b} \sqrt{ab}

 

Example 3

Simplify \sqrt{\frac{5}{3}}.

Answer

Multiply the numerator and denominator of \frac{5}{3} by 3 so that the denominator of the fraction under the radical sign is a perfect square, i.e. 32. Pull the root of the perfect square out of the radical sign as follows.

\sqrt{\frac{5}{3}}=\sqrt{\frac{15}{9}}=\frac{1}{3} \sqrt{15}.

Therefore, \sqrt{\frac{5}{3}}=\frac{1}{3} \sqrt{15}.

 

Example 4

Simplify \sqrt{\frac{10}{7}}.

Answer

Multiply the numerator and denominator of \frac{10}{7} by 7 so that the denominator of the fraction under the radical sign is a perfect square, i.e. 72. Pull the root of the perfect square out of the radical sign as follows.

\sqrt{\frac{10}{7}}=\sqrt{\frac{70}{49}}=\frac{1}{7} \sqrt{70}.

In conclusion, \sqrt{\frac{10}{7}}=\frac{1}{7} \sqrt{70}.

 

Simplifying the form of \frac{a}{\sqrt{b}}; b > 0

Multiply the numerator and denominator of \frac{a}{\sqrt{b}} by √b. This results in:

\frac{a}{\sqrt{b}}=\frac{a}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}}=\frac{ a}{b} \sqrt{b}

 

Example 5

Simplify \frac{5}{\sqrt{11}}.

Answer

Multiply the numerator and denominator of \frac{5}{\sqrt{11}} by √11. It follows that:

\frac{5}{\sqrt{11}}=\frac{5}{\sqrt{11}} \cdot \frac{\sqrt{11}}{\sqrt{11}}=\frac{ 5}{11} \sqrt{11}

 

Example 6

Simplify \frac{7-\sqrt{5}}{\sqrt{5}}.

Answer

Multiply the numerator and denominator of \frac{7-\sqrt{5}}{\sqrt{5}} by √5 to get:

\frac{7-\sqrt{5}}{\sqrt{5}}=\frac{7-\sqrt{5}}{\sqrt{5}} \cdot \frac{\sqrt{5} }{\sqrt{5}}

\frac{7-\sqrt{5}}{\sqrt{5}}=\frac{(7-\sqrt{5}) \sqrt{5}}{5}

\frac{7-\sqrt{5}}{\sqrt{5}}=\frac{7 \sqrt{5}-5}{5}

 

Simplifying the form of \frac{a}{\sqrt{b} + \sqrt{c}} or \frac{a}{\sqrt{b} - \sqrt{c}}

To simplify a radical fraction of such forms, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of (√b + √c) is (√b – √c), whereas the conjugate of (√b – √c) is (√b + √c). As a consequence, to simplify the form \frac{a}{\sqrt{b} + \sqrt{c}}, we multiply both the numerator and denominator by the conjugate of (√b + √c ), i.e. (√b – √c). The technique is demonstrated as follows.

\frac{a}{\sqrt{b} + \sqrt{c}} = \frac{a}{\sqrt{b} + \sqrt{c}} \cdot \frac{\sqrt{b} - \sqrt{c}}{\sqrt{b} - \sqrt{c}}

\frac{a}{\sqrt{b} + \sqrt{c}} = \frac{a(\sqrt{b} - \sqrt{c})}{(\sqrt{b})^2 - (\sqrt{c})^2}

\frac{a}{\sqrt{b} + \sqrt{c}} = \frac{a(\sqrt{b} - \sqrt{c})}{b - c}

 

Example 7

Simplify \frac{3}{\sqrt{7} + \sqrt{6}}.

Answer

The conjugate of (√7 + √6) is (√7 – √6). To simplify the radical fraction, multiply it by \frac{\sqrt{7} - \sqrt{6}}{\sqrt{7} - \sqrt{6}}. It follows that:

\frac{3}{\sqrt{7} + \sqrt{6}} = \frac{3}{\sqrt{7} + \sqrt{6}} \cdot \frac{\sqrt{7} - \sqrt{6}}{\sqrt{7} - \sqrt{6}}

\frac{3}{\sqrt{7} + \sqrt{6}} = \frac{3(\sqrt{7} - \sqrt{6})}{(\sqrt{7})^2 - (\sqrt{6})^2}

\frac{3}{\sqrt{7} + \sqrt{6}} = \frac{3(\sqrt{7} - \sqrt{6})}{7 - 6}

\frac{3}{\sqrt{7} + \sqrt{6}} = 3 \sqrt{7} - 3 \sqrt{6}

 

Example 8

Simplify \frac{\sqrt{5}}{\sqrt{5} + \sqrt{2}}.

Answer

The conjugate of (√5 + √2) is (√5 – √2). To simplify the fraction, multiply it by \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}. It follows that:

\frac{\sqrt{5}}{\sqrt{5} + \sqrt{2}} = \frac{\sqrt{5}}{\sqrt{5} + \sqrt{2}} \cdot \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}

\frac{\sqrt{5}}{\sqrt{5} + \sqrt{2}} = \frac{{\sqrt{5}}(\sqrt{5} - \sqrt{2})} {(\sqrt{5})^2 - (\sqrt{2})^2}

\frac{\sqrt{5}}{\sqrt{5} + \sqrt{2}} = \frac{5}{3} - \frac{1}{3} \sqrt{10}

 

To simplify the form \frac{a}{\sqrt{b} - \sqrt{c}}, multiply both the numerator and denominator by the conjugate of (√b – √c ), that is (√b + √c). Hence:

\frac{a}{\sqrt{b} - \sqrt{c}} = \frac{a}{\sqrt{b} - \sqrt{c}} \cdot \frac{\sqrt{b} + \sqrt{c}}{\sqrt{b} + \sqrt{c}}

\frac{a}{\sqrt{b} - \sqrt{c}} = \frac{a(\sqrt{b} + \sqrt{c})}{(\sqrt{b})^2 - (\sqrt{c})^2}

\frac{a}{\sqrt{b} - \sqrt{c}} = \frac{a(\sqrt{b} + \sqrt{c})}{b - c}

 

Example 9

Simplify \frac{3}{\sqrt{7} - \sqrt{6}}.

Answer

The conjugate of (√7 – √6) is (√7 + √6). To simplify the fraction, multiply it by \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} + \sqrt{6}}. This results in:

\frac{3}{\sqrt{7} - \sqrt{6}} = \frac{3}{\sqrt{7} - \sqrt{6}} \cdot \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} + \sqrt{6}}

\frac{3}{\sqrt{7} - \sqrt{6}} = \frac{3(\sqrt{7} + \sqrt{6})}{(\sqrt{7})^2 - (\sqrt{6})^2}

\frac{3}{\sqrt{7} - \sqrt{6}} = \frac{3(\sqrt{7} + \sqrt{6})}{7 - 6}

\frac{3}{\sqrt{7} - \sqrt{6}} = 3 \sqrt{7} + 3 \sqrt{6}

 

Example 10

Simplify \frac{3}{2 \sqrt{3} - 3}.

Answer

The conjugate of (2√3 – 3) is (2√3 + 3). To simplify the fraction, multiply it by \frac{2 \sqrt{3} + 3}{2 \sqrt{3} + 3}. Therefore:

\frac{3}{2 \sqrt{3} - 3} =\frac{3}{2 \sqrt{3} - 3} \cdot \frac{2 \sqrt{3} + 3}{2 \sqrt{3} + 3}

\frac{3}{2 \sqrt{3} - 3} = \frac{3(2 \sqrt{3} + 3)}{(2 \sqrt{3})^2 - 3^2}

\frac{3}{2 \sqrt{3} - 3} = \frac{3(2 \sqrt{3} + 3)}{12 - 9}

\frac{3}{2 \sqrt{3} - 3} = \frac{3(2 \sqrt{3} + 3)}{3}

\frac{3}{2 \sqrt{3} - 3} = 2 \sqrt{3} + 3

Leave a Reply

Your email address will not be published. Required fields are marked *